pycnometer - significado y definición. Qué es pycnometer
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es pycnometer - definición

RATIO OF THE DENSITY (MASS PER VOLUME) OF A SUBSTANCE TO THE DENSITY OF A GIVEN REFERENCE MATERIAL
Specific gravity; Relative gravity; Specific Gravity; Pycnometer; Specific gravities; Pyknometer; Apparent specific gravity; Density bottle; Specific gravity bottle
  • 300px
  • An empty glass pycnometer and stopper
  • A filled pycnometer
  • A [[United States Navy]] [[Aviation boatswain's mate]] tests the specific gravity of [[JP-5]] fuel

Pycnometer         
·noun A specific gravity bottle; a standard flask for measuring and comparing the densities of liquids.
Gas pycnometer         
LABORATORY DEVICE USED FOR MEASURING THE DENSITY OF SOLIDS BY GAS DISPLACEMENT
A gas pycnometer is a laboratory device used for measuring the density—or, more accurately, the volume—of solids, be they regularly shaped, porous or non-porous, monolithic, powdered, granular or in some way comminuted, employing some method of gas displacement and the volume:pressure relationship known as Boyle's Law. A gas pycnometer is also sometimes referred to as a helium pycnometer.
relative density         
¦ noun the ratio of the density of a substance to a standard density, usually that of water or air.

Wikipedia

Relative density

Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest (at 4 °C or 39.2 °F); for gases, the reference is air at room temperature (20 °C or 68 °F). The term "relative density" (often abbreviated r.d. or RD) is often preferred in scientific usage, whereas the term "specific gravity" is deprecated.

If a substance's relative density is less than 1 then it is less dense than the reference; if greater than 1 then it is denser than the reference. If the relative density is exactly 1 then the densities are equal; that is, equal volumes of the two substances have the same mass. If the reference material is water, then a substance with a relative density (or specific gravity) less than 1 will float in water. For example, an ice cube, with a relative density of about 0.91, will float. A substance with a relative density greater than 1 will sink.

Temperature and pressure must be specified for both the sample and the reference. Pressure is nearly always 1 atm (101.325 kPa). Where it is not, it is more usual to specify the density directly. Temperatures for both sample and reference vary from industry to industry. In British brewing practice, the specific gravity, as specified above, is multiplied by 1000. Specific gravity is commonly used in industry as a simple means of obtaining information about the concentration of solutions of various materials such as brines, must weight (syrups, juices, honeys, brewers wort, must, etc.) and acids.